Role of differentially expressed LBX1 in Adolescent Idiopathic Scoliosis (AIS) paraspinal muscle phenotypes and muscle-bone crosstalk through modulating myoblasts.
2021
AIS is three-dimensional spinal deformity with unclear etiopathogenesis. LBX1 is so far the only multi-centers validated AIS predisposing gene. The imbalance of posterior paraspinal muscles is an important factor in AIS etiopathogenesis. It is poorly understood how LBX1 contributes to the abnormal paraspinal muscles and onset/progression of AIS. We aimed to evaluate the expression of LBX1 in paraspinal muscles at the concave and convex side in AIS, and whether alternation of LBX1 expression could affect myoblastsactivities and potentially influence muscle-bone interaction via myokines expression. Paraspinal muscles from AIS and age- and curvature-matched congenital scoliosis (CS) patients were collected for fiber types analysis. Biopsies were also subjected to qPCR to validate expression of myogenic markers, selected myokines and LBX1. Human skeletal muscle myoblast (HSMM) was used for LBX1 loss-of-function study in vitro. Muscle fiber types analysis showed type I and type IIX/IIAX fibers proportion were significantly different between AIS concave and convex but not in two sides of CS. LBX1, myogenic markers and one myokine were significantly imbalanced in AIS but not in CS. Loss-of-function study showed knockdown of LBX1 could inhibit myogenic markers expression and myokines as well. This study provides new insight into the association between imbalanced paraspinal muscle and potential muscle-bone crosstalk in AIS patients and the biological function of predisposing gene LBX1. Further investigation with appropriate animal models is warranted to explore if asymmetric expression of LBX1 could result in distinct muscle phenotypes and bone qualities thus affect the progression of spine curvature in AIS.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI