Detecting subpixel deciduous components to complement traditional land cover classifications in Southwest Finland
2015
Abstract To ensure successful conservation of ecological and cultural landscape values, detailed and up-to-date spatial information of existing habitat patterns is essential. However, traditional satellite-based and raster classifications rely on pixels that are assigned to a single category and often generalized. For many fragmented key habitats, such a strategy is too coarse and complementary data is needed. In this paper, we aim at detecting pixel-wise fractional coverage of broadleaved woodland and grassland components in a hemiboreal landscape. This approach targets ecologically relevant deciduous fractions and complements traditional crisp land cover classifications. We modeled fractional components using a k -NN approach, which was based on multispectral satellite data, assisted by a digital elevation model and a contemporary map database. The modeled components were then analyzed based on landscape structure indicators, and evaluated in conjunction with CORINE classification. The results indicate that both broadleaved forest and grassland components are widely distributed in the study area, principally organized as transition zones and small patches. Landscape structure indicators show a substantial variation based on the fractional threshold, pinpointing their dependency on the classification scheme and grain. The modeled components, on the other hand, suggest high internal variation for most CORINE classes, indicating their heterogeneous appearance and showing that the presence of deciduous components in the landscape are not properly captured in a coarse land cover classification. To gain a realistic perception of the landscape, and use this information for the needs of spatial planning, both fractional results and existing land cover classifications are needed. This is because they mutually contribute to an improved understanding of habitat patterns and structures, and should be used to complement each other.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
56
References
2
Citations
NaN
KQI