Intervention of systolic pressure and left ventricular hypertrophy in rats under cold stress

2016 
Objective To investigate the effects of different drugs on systolic blood pressure (SBP) and left ventricular hypertrophy (LVH) in spontaneously hypertensive rats under cold stress. Methods A total of 40 male spontaneously hypertensive rats aged 10 weeks (160~200 g) were given adaptive feeding for 7 days at a temperature of 20±1°C and then randomly divided into control group, cold stress group, metoprolol group, amlodipine group, and benazepril group, with 8 rats in each group. SBP, body weight, and heart rate were measured once a week. After the rats were sacrificed by exsanguination, left ventricular weight (LVW) was measured, and left ventricular weight index (LVWI; mg/g) was calculated. Radioimmunoassay was used to measure the concentrations of endothelin-1 (ET-1) and angiotensin-II (Ang-II) in plasma and myocardium, and the chemical method was used to measure the concentrations of nitric oxide (NO) in plasma and myocardium. RT-PCR was used to measure the mRNA expression of endothelin-A receptor. Results Compared with the cold stress group, all medication groups showed significant reductions in SBP since week 5 (P<0.05). The cold stress group showed a significant increase in LVWI compared with the control group (3.38±0.27 mg/g vs 2.89±0.19 mg/g, P<0.05). The amlodipine group showed a significant reduction in LVWI compared with the cold stress group (2.98±0.28 mg/g vs 3.38±0.27 mg/g, P<0.05). The cold stress group showed a significant reduction in plasma NO concentration compared with the control group (104.9±19.5 μmol/L vs 129.3±17.8 μmol/L, P<0.05) ; compared with the cold stress group, all the medication groups showed significant increases in blood NO concentration (P<0.05). The cold stress group showed a significant increase in myocardial ET-1 concentration compared with the control group (6.3±1.5 pg/100 mg vs 4.5±1.9 pg/100 mg, P<0.05) ; compared with the cold stress group, the amlodipine group showed a significant reduction in myocardial ET-1 concentration (4.4±1.0 pg/100 mg vs 6.3±1.5 pg/100 mg, P<0.05). The cold stress group had significantly higher mRNA expression of endothelin-A receptor than the control group (0.86±0.23 vs 0.45±0.16, P<0.01) ; compared with the cold stress group, the amlodipine group showed a significant reduction in the mRNA expression of endothelin-A receptor (0.41±0.14 vs 0.86±0.23, P<0.01). Conclusion Amlodipine can reduce the increase in SBP and inhibit LVH in spontaneously hypertensive rats under cold stress. Key words: Chills; Stress; Systolic pressure; Left ventricular hypertrophy
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []