Morphological signs of connective tissue dysplasia as predictors of frequent post-exercise musculoskeletal disorders

2020 
Background Connective tissue dysplasia (CTD) is a risk factor for musculoskeletal disorders. Changes caused by disorganization of collagen and elastin fibers lead to the inability of withstanding heavy mechanical stress. In clinical practice, diagnosis of these disorders depends on physical and anthropomorphic evaluation. Methods Forty-eight patients with frequent post-exercise musculoskeletal disorders were evaluated for CTD. The control group included 36 healthy participants. Both groups were evaluated via therapeutic examination with assessment of anthropometric indicators and physical-physiological evaluation, surveying and gathering of anamnesis. Based on testing results, study participants were evaluated on CTD presence and risk factors. Results All experimental group patients had connective tissue dysplasia of moderate and severe degree, with a total score of 49.44 ± 13.1. Certain morphological characteristics showed prevalence, allowing to determine pathognomonic predictors of high predisposition to frequent post-exercise musculoskeletal disorders. Back pain (100%), asthenic syndrome and kyphotic spinal deformation (75%), high gothic palate, hypermobility of joints and the auricles, excessive elasticity (63%), varicose veins of the lower extremities (56%) and hemorrhoids (56%), changes in the shape of the legs and temporomandibular joint (50%) showed to be significant clinical factors indicating possible connective tissue dysplasia. Conclusions The presence of these diagnostically significant morphological signs of CTD in humans is a pathognomonic predictor of a high predisposition to frequent injuries. Their early detection helps promote proper appointment of adequate physical activity regimen and develop treatment for the underlying cause.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []