Coarse‐grained molecular dynamics simulation study on spherical and tube‐like vesicles formed by amphiphilic copolymers Part B Polymer physics
2017
Molecular‐level understanding of the vesicular structure and formation process is beneficial for potential vesicle applications, especially in drug delivery. In this article, coarse‐grained molecular dynamics simulation was used to study the self‐assembly behavior of amphiphilic poly(acrylic acid)‐b‐polystyrene copolymers in water at different concentrations and PS/PAA block ratios. It was found that various spherical and tube‐like vesicles formed at PS/PAA 3:3 and 4:2. For spherical vesicles, analysis of vesicular structure indicated that the cavity size was influenced by copolymer concentration and wall thickness by the block ratio. Tube‐like vesicle was formed via the fusion of two spherical vesicles, and a key factor for this morphology is polymer movements between inner and outer layer. This simulation study identifies the key factors governing vesicle formation and structure, and provides a guidance to design and prepare various vesicles for wide applications in drug delivery. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1220–1226
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI