Linking rhizosphere processes across scales: Opinion

2021 
Purpose: Simultaneously interacting small-scale rhizosphere processes determine emergent plant-scale behaviour, including growth, transpiration, nutrient uptake, soil carbon storage and transformation by microorganisms. Current advances in modelling and experimental methods open the path to unravel and link those processes. Methods: We present a series of examples of state-of-the art simulations addressing this multi-scale, multi-process problem from a modelling point of view, as well as from the point of view of integrating newly available rhizosphere data and images. Results: Each example includes a model that links scales and experimental data to set-up simulations that explain and predict spatial and temporal distribution of rhizodeposition as driven by root architecture development, soil structure, presence of root hairs, soil water content and distribution of soil water. Furthermore, two models explicitly simulate the impact of the rhizodeposits on plant nutrient uptake and soil microbial activity, respectively. This exemplifies the currently available state of the art modelling tools in this field: image-based modelling, pore-scale modelling, continuum scale modelling and functional-structural plant modelling. We further show how to link the pore scale to the continuum scale by homogenisation or by deriving effective physical parameters like viscosity from nano-scale chemical properties. Conclusion: Modelling allows to integrate and make use of new experimental data across different rhizosphere processes (and thus across different disciplines) and scales. Described models are tools to test hypotheses and consequently improve our mechanistic understanding of how rhizosphere processes impact plant-scale behaviour. Linking multiple scales and processes is the logical next step for future research.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    0
    Citations
    NaN
    KQI
    []