Material removal study at silicon nitride molds for the precision glass molding using MRF process

2008 
High-technology applications which are using high precision optic components in high and medium quantities have increased during recent years. One possibility to mass-produce e.g. such lenses is the precision glass molding (PGM) process. Especially for aspheric and free-form elements the PGM process has certain advantages. Premise is to manufacture accurate press molds, which have to feature smaller figure errors as the required lenses and may be made of materials, which are difficult to machine, like silicon nitride ceramics. These work pieces have to be machined in economical and steady process chains. However, due to the complex shapes and the corresponding accuracy an error dependent polishing is required. The Magnetorheological Finishing (MRF) as a high precision computer controlled polishing (CCP) technique is used and will further be presented in this work. To achieve the postulated demands a previous study of the material removal at selected machining parameters is needed. Changing machining parameters modify the removal, which is presented through values like the peak and volume removal rate. The value changes during the controlled variation of process parameters are described and discussed. Magnetorheological Finishing (MRF) provides one of the best methods to finish PGM molds that are relatively inaccurate to high precision in an economical, steady and efficient way. This work indicates the MRF removal selection and removal interference for the correction and finishing of precise silicon nitride molds for the precision glass molding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    2
    Citations
    NaN
    KQI
    []