Corrosion Behavior of High Burnup Spent Fuel in Highly Alkaline Solutions

2009 
This study is focused on the alteration behavior of spent nuclear fuel when exposed to highly alkaline groundwater. Contact of highly alkaline solution with the waste product is considered in the Belgian concept for disposal in the Boom Clay formation. According to the “supercontainer design” the fuel will be encapsulated in carbon steel canisters, surrounded by a concrete over-pack. After saturation of the engineered barriers by porewater, interactions with the concrete will result in solutions rich in NaOH, KOH and Ca(OH) 2 . Using this type of solution at pH 12.5, spent nuclear fuel corrosion experiments were conducted over 378 days. Under anoxic conditions, parallel experiments were performed (a) in the absence of Fe phases and (b) in the presence of solid Fe phases representing container (corrosion) products. Both types of experiments resulted in relatively low matrix dissolution rates, around 10 -7 per day, according to the fractional release of Sr. Solution concentrations of actinides are close to or below the detection limit, indicating an effective retention of these radioelements in the system. The observed precipitation of a Ca rich phase onto the surfaces of the corroded fuel samples may be related to the inhibited re-lease of actinides, Sr and other matrix bound radioelements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    5
    Citations
    NaN
    KQI
    []