Production and Evaluation of Biosynthesized Cellulose Tubes as Promising Nerve Guides for Spinal Cord Injury Treatment

2020 
Spinal cord injury (SCI) is a central nervous disorder that can result in permanent motor and sensory damage due to a severed communication pathway. Although there is currently no effective treatment, nerve guide tubes have been used to bridge the injured stumps and act as drug delivery systems. In this study, biosynthesized cellulose (BC) nerve guides were prepared, and nerve growth factor (NGF)-a model growth factor-was incorporated into the tubular nerve guide in order to obtain a nerve guide/drug delivery system to assist the regeneration. To achieve this, Gluconacetobacter hansenii was cultivated in a special bioreactor to produce biosynthesized cellulose tubes (BCTs) in situ, and the physical and mechanical properties of the BCTs obtained from different cultivation time points were evaluated. Our results showed that the properties of the BCTs were comparable to those of the native human neural tissues, and that the NGF released from the BCTs was bioactive for at least 7 days as evaluated by PC12 cell cultures in vitro. In summary, this study evaluated the use of BCT as a drug releasing nerve guide, and our results showed that the BCT is an attractive strategy to enhance nerve regeneration after the SCI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    4
    Citations
    NaN
    KQI
    []