Formation and characterization of long-chained alkylsiloxane self-assembled monolayers on atomic-layer-deposited aluminum oxide surfaces

2006 
We report the formation of highly robust long-chained alkylsiloxane self-assembled monolayers (SAMs) on aluminum oxide films prepared by atomic-layer deposition (ALD). The surface chemistry and the morphological characteristics of the SAMs were examined by X-ray photoelectron spectroscopy, infrared spectroscopy, atomic-force microscopy, and contact-angle goniometry. The octadecylsiloxane-derived SAMs initially hydrolyze and deposit on the alumina surface as ∼1.8 nm thick, monolayer-high islands ≤50 nm in diameter. The size of these islands increases with time, likely through a surface-diffusion aggregation process. Coalescence of neighboring islands leads to a densely packed and robust monolayer on the alumina surface. The SAMs on ALD alumina are expected to be useful in a number of nanostructure applications where the combination of conformal alumina deposition and conformal coverage of the alumina by an organic layer is critical.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    11
    Citations
    NaN
    KQI
    []