Influence of salinity on the toxicity of copper and cadmium to Zebrafish embryos

2021 
Salinization has become a serious worldwide environmental perturbation in freshwater ecosystems. Concomitantly, many of such ecosystems are already impacted by other toxicants, which together with increased salinity may result in synergistic, antagonistic or additive toxic effects to biota. This work intended to assess the influence of increasing salinity (by using NaCl) on the lethal and sublethal toxicity of two metallic elements (copper and cadmium) in embryos of the fish species Danio rerio. This goal was achieved by exposing zebrafish embryos to seven concentrations of NaCl, individually or combined with each metal, using a full factorial design. The following endpoints were monitored in the test organisms: mortality, hatching, malformations and the enzymatic activity of glutathione S-transferase (GST) and cholinesterase (ChE). Overall, moderate salinity levels alleviated the lethal toxicity of both copper and cadmium although this effect was stronger in the copper assay. This effect was also influenced, as expected, by the concentrations of the metals indicating that the protective effect of salt only reaches some levels, after what is overwhelmed by the high metal toxicity, especially with the non-essential metal cadmium. At sub-lethal concentrations, the interactive effect resulting from NaCl and metals was not consistent and varied with the endpoint analyzed and the metal tested. Overall, the interactions between the salt and metals seem complex and with more drastic effects (positive or negative) on lethal endpoints than sub-lethal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    0
    Citations
    NaN
    KQI
    []