Electron-Hole Scattering Limited Transport of Dirac Fermions in a Topological Insulator.

2021 
We have experimentally investigated the effect of electron temperature on transport in the two-dimensional Dirac surface states of the three-dimensional topological insulator HgTe. We have found that around the minimal conductivity point, where both electrons and holes are present, heating the carriers with a DC current results in a nonmonotonic differential resistance of narrow channels. We have shown that the observed initial increase in resistance can be attributed to electron-hole scattering, while the decrease follows naturally from the change in Fermi energy of the charge carriers. Both effects are governed dominantly by a van Hove singularity in the bulk valence band. The results demonstrate the importance of interband electron-hole scattering in the transport properties of topological insulators.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []