Upper crustal emplacement and deformation of granitoids inside the Uppermost Unit of the Cretan nappe stack: constraints from U–Pb zircon dating, microfabrics and paleostress analyses

2015 
The present study is dealing with the emplacement and deformation of diorite and quartz diorite exposed along new road cuts between Agios Nikolaos and Sitia (Uppermost Unit, eastern Crete). Mingling of both melt types is indicated by enclaves of diorite inside quartz diorite and vice versa. The diorite and quartz diorite intruded into coarse-grained white marble, which is in lateral contact to, but also forms the roof of, the intrusive body. Evidence for contact metamorphism is indicated by increasing grain size of calcite in the marble with decreasing distance from the diorite. U–Pb (TIMS) dating of zircons, separated from quartz diorite, yielded a concordant age at 74.0 ± 0.25 Ma, which is interpreted as emplacement age. As this age is close to published K–Ar cooling ages of hornblende and biotite, the melt should have intruded and cooled down rapidly at upper structural levels, which is not common for granitoids of the Uppermost Unit of Crete. Upper crustal melt emplacement is also documented by stoped blocks and by the lack of any ductile (viscous) deformation. The diorite and quartz diorite, however, are affected by strong post-Oligocene brittle faulting. Paleostress analysis, based on these faults, revealed a change in stress field from N–S and NNW–SSE shortening by thrusting (convergence between African and European plates) to NNE–SSW and NE–SW shortening accommodated by strike-slip (SW-ward extrusion of the Anatolian microplate). Calcite-twin density indicates high differential stress (260 ± 20 MPa) related to these phases of crustal shortening.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    7
    Citations
    NaN
    KQI
    []