High stakes decision-making by female crickets (Gryllus texensis): When to trade-in wing muscles for eggs
2020
AbstractResource-intensive traits, such as dispersal and reproduction, can be difficult to express simultaneously because of resource limitations. One solution is to switch between resource-intensive behaviors. Such phenotypic plasticity is one strategy that organisms use to funnel resources from one expensive trait to another. In crickets (Gryllus texensis), the development and maintenance of flight muscles reduce resource availability for reproduction, leading to physiological trade-offs between the two traits. Long-winged female G. texensis can histolyze their wing muscles, resulting in increased egg production, but they can then no longer fly. Using a diet that mimics food availability in the field, we found that long-winged females adopted one of the three following strategies: early reproduction, intermediate reproduction, and late reproduction. Some late reproducers maintained their flight capability until the end of their natural life span and laid few eggs. If females lost the ability to fly (i.e., their hind wings are removed), they laid eggs earlier, leading to increased reproductive output. However, other environmental cues (e.g., an increased number of mates, increased oviposition substrate quality, or a bout of dispersal flight) had no effect. Late-reproducing females laid 96% fewer eggs than early reproducers, suggesting that late reproduction exacts a huge fitness cost. Nevertheless, some females maintain their flight muscles to the end of their natural life span in both the lab and the field. We suggest that the ability to fly allows for bet hedging against an environmental catastrophe (e.g., drought or flood). This benefit may help explain the persistence of late-reproducing long-winged females, despite the cost of this choice. As climate change increases drought and flood in Texas, late dispersal may be one factor that helps this species survive in the future. An increased understanding of factors that maintain seemingly low fitness strategies can help us predict the resilience of species under climate change.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
1
Citations
NaN
KQI