Leaf surface microtopography shaping the bacterial community in the phyllosphere: evidence from 11 tree species.

2022 
Abstract Phyllosphere bacteria are an important component of environmental microbial communities and are closely related to plant health and ecosystem stability. However, the relationships between the inhabitation and assembly of phyllosphere bacteria and leaf microtopography are still obscure. In this study, the phyllosphere bacterial communities and leaf microtopographic features (vein density, stomatal length, and density) of eleven tree species were fully examined. Both the absolute abundance and diversity of phyllosphere bacterial communities were significantly different among the tree species, and leaf vein density dominated the variation. TITAN analysis showed that leaf vein density also played more important roles in regulating the relative abundance of bacteria than stomatal features, and 6 phyla and 62 genera of phyllosphere bacteria showed significant positive responses to leaf vein density. Moreover, LEfSe analysis showed that the leaves with higher vein density had more bacterial biomarkers. Leaf vein density also changed the co-occurrence pattern of phyllosphere bacteria, and the co-occurrence network demonstrated more negative correlations and more nodes on the leaves with larger leaf vein density, indicating that higher densities of leaf veins improved the stability of the phyllosphere bacterial community. Phylogenetic analysis showed that deterministic processes (especially homogeneous selection) dominated the assembly process of phyllosphere bacterial communities. The leaf vein density increased the degree of bacterial clustering at the phylogenetic level. Therefore, the inhabitation and assembly of the phyllosphere bacterial community are related to leaf microtopography, which provides deeper insight into the interaction between plants and bacteria.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    89
    References
    0
    Citations
    NaN
    KQI
    []