Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels

2016 
Polysaccharide-based injectable hydrogels have several advantages in the context of biomedical use. However, the main obstruction associated with the utilization of these hydrogels in clinical application is their poor mechanical properties. Herein, we describe in situ gelling of nanocomposite hydrogels based on quaternized cellulose (QC) and rigid rod-like cationic cellulose nanocrystals (CCNCs), which can overcome this challenge. In all cases, gelation immediately occurred with an increase of temperature, and the CCNCs were evenly distributed throughout the hydrogels. The nanocomposite hydrogels exhibited increasing orders-of-magnitude in the mechanical strength, high extension in degradation and the sustained release time, because of the strong interaction between CCNCs and QC chains mediated by the cross-linking agent (β-glycerophosphate, β-GP). The results of the in vitro toxicity and in vivo biocompatibility tests revealed that the hydrogels did not show obvious cytotoxicity and inflammatory reactio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    54
    Citations
    NaN
    KQI
    []