Innovations In Teaching Mechanics Of Materials In Materials Science And Engineering Departments
2001
Traditional mechanical design employs experimentally obtained or handbook material properties in selection and sizing to develop a product. This approach is increasingly inefficient as designs come to employ modern materials whose processing and resulting properties are themselves an adjustable part of the design process. Both the design process and the engineering curricula used in educating designers can profit from an integration of the materials science and traditional mechanics of materials approaches, as opposed to an artificial separation of these two interlinked disciplines. The Materials Science and Engineering department at MIT is large enough to offer its own Mechanics of Materials subject, and this subject naturally seeks to blend the materials and mechanics aspects of the discipline. A series of NSF-sponsored, web-available modules is being prepared to support this approach, along with Java applets and other electronic teaching aids. The paper provides an overview of this effort, emphasising the teaching of fracture mechanics and microstructural failure mechanisms. I. Introduction Most engineers are involved in design, and they generally design articles of commercial importance using selected materials. (Software engineers might be an exception.) University curricula in engineering are aimed at providing the underlying fundamental knowledge needed in design work, and often try to teach or at least provide some experience in aspects of the design process itself. In the case of load-bearing structural items, design requires at least two major disciplines: mechanics, the primarily mathematical description of the stresses and strains induced in an object by applied loads; and materials, the description of how the material will respond to these stresses and strains.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
5
References
6
Citations
NaN
KQI