language-icon Old Web
English
Sign In

Polyelectrolyte model of DNA

1987 
The present state of the theory of strongly charged polyelectrolytes of the DNA type is reviewed. An infinitely long, uniformly charged cylinder immersed in a dielectric continuum is adopted as a model of DNA. Small mobile ions are treated as impermeable spheres. A comparison of the results of rigorous and approximate theoretical approaches to the description of this model shows that the self-consistent-field method, i.e., the Poisson-Boltzmann equation, is a reliable basis for deriving quantitative results. The theory of polyelectrolytes based on a solution of the nonlinear Poisson-Boltzmann equation is used to analyze the role played by electrostatic interactions in conformational changes in DNA. Transitions of two types are considered: a helix-coil transition and a transition between the ordinary right-hand-helix DNA (the B form) and the recently discovered left-hand-helix (the Z form). In the latter case the theory predicts a nonmonotonic behavior of the difference between the free energies of these conformations as a function of the salt concentration. It also predicts the existence of a critical point of a B-Z equilibrium for ionic strengths in the physiological region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    79
    Citations
    NaN
    KQI
    []