Space-time structure of the morning aurora inferred from coincident DMSP-F6,-F8, and Søndrestrøm incoherent scatter radar observations

1993 
Abstract On rare occasions, observations from the DMSP-F6 and -F8 spacecraft and the Sondrestrom incoherent scatter radar coincide in space. Such coincidence offers a unique opportunity to study temporal vs spatial variations on a small scale. We discuss data from one of those occasions, with observations made in the dawn sector in the presence of moderate auroral precipitation during a magnetically quiet period. The DMSP satellites measured vertical electron and ion flux and cross-track plasma drift while the radar measured the ionospheric electron density distribution and line-of-sight plasma velocities. We combine these data sets to construct a two-dimensional map of a possible auroral pattern above Sondrestrom. It is characterized by the following properties. No difference is seen between the gross precipitation patterns measured along the DMSP-F6 and -F8 trajectories (separated by 32 km in magnetic east-west direction and some 4 s in travel time in magnetic north-south direction), except that they are not exactly aligned with the L shells. However, F6 and F8 observed minor differences in the small-scale structures. More significant differences are found between small-scale features in the DMSP precipitation measurements and in radar observations of the E -region plasma density distribution. These measurements are separated by 74 km, equivalent to 2.4°, in magnetic longitude, and 0–40 s in time along the spacecraft trajectories (varying with magnetic latitude). Large-scale magnetospheric-ionospheric surfaces such as plasma flow reversal, poleward boundary of the keV ion and electron precipitation, and poleward boundary of E -region ionization, coincide. The combined data suggest that the plasma flow reversal delineates the polar cap boundary, that is, the boundary between precipitation characteristic for the plasma mantle and for the plasma sheet boundary layer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    8
    Citations
    NaN
    KQI
    []