Three-Dimensional Multiphysics Coupled Field Analysis of an Integrated Thermoelectric Device

2012 
Thermoelectric elements made of semiconductor plates laminated onto a highly electrical and thermally conductive inter-connector with a flow channel configuration can be treated as an integrated thermoelectric device (iTED). An element constructed with bulk crystalline n- and p-type (Bismuth-Telluride) semiconducting materials and copper as a conducting material is considered. In this study, the thermoelectric performance of such an element using fluid-thermoelectric coupled field numerical methods has been investigated. The iTED is subjected to constant cold temperature at the bottom and top surfaces, while the inter-connector channel walls are exposed to hot fluid flow; the remaining surfaces are kept adiabatic. The performance of the iTED element is studied in terms of heat input Q h , power output P 0, conversion efficiency η, produced electric current and Ohmic and Seebeck voltages for different load resistances, inlet hot fluid temperatures T in , semiconductor material heights d, and flow rates Re....
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    20
    Citations
    NaN
    KQI
    []