Melatonin facilitates lateral root development by coordinating PAO-derived hydrogen peroxide and Rboh-derived superoxide radical

2019 
Abstract Melatonin, a phytochemical, can regulate lateral root (LR) formation, but the downstream signaling of melatonin remains elusive. Here we investigated the roles of hydrogen peroxide (H2O2) and superoxide radical (O2•¯) in melatonin-promoted LR formation in tomato (Solanum lycopersicum) roots by using physiological, histochemical, bioinformatic, and biochemical approaches. The increase in endogenous melatonin level stimulated reactive oxygen species (ROS)-dependent development of lateral root primordia (LRP) and LR. Melatonin promoted LRP/LR formation and modulated the expression of cell cycle genes (SlCDKA1, SlCYCD3;1, and SlKRP2) by stimulating polyamine oxidase (PAO)-dependent H2O2 production and respiratory burst oxidase homologue (RBOH)-dependent O2•¯ production, respectively. Screening of SlPAOs and SlRbohs gene family combined with gene expression analysis suggested that melatonin-promoted LR formation was correlated to the upregulation of SlPAO1, SlRboh3, and SlRboh4 in LR-emerging zone. Transient expression analysis confirmed that SlPAO1 was able to produce H2O2 while SlRboh3 and SlRboh4 were capable of producing O2•¯. Melatonin-ROS signaling cassette was also found in the regulation of LR formation in rice root and lateral hyphal branching in fungi. These results suggested that SlPAO1-H2O2 and SlRboh3/4-O2•¯ acted as downstream of melatonin to regulate the expression of cell cycle genes, resulting in LRP initiation and LR development. Such findings uncover one of the regulatory pathways for melatonin-regulated LR formation, which extends our knowledge for melatonin-regulated plant intrinsic physiology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    9
    Citations
    NaN
    KQI
    []