A Surface Complexation Model of Alkaline-SmartWater Electrokinetic Interactions in Carbonates

2020 
Understanding the effect of injection water chemistry is becoming crucial, as it has been recently shown to have a major impact on oil recovery processes in carbonate formations. Various studies have concluded that surface charge alteration is the primary mechanism behind the observed change of wettability towards water-wet due to SmartWater injection in carbonates. Therefore, understanding the surface charges at brine/calcite and brine/crude oil interfaces becomes essential to optimize the injection water compositions for enhanced oil recovery (EOR) in carbonate formations. In this work, the physicochemical interactions of different brine recipes with and without alkali in carbonates are evaluated using Surface Complexation Model (SCM). First, the zeta-potential of brine/calcite and brine/crude oil interfaces are determined for Smart Water, NaCl, and Na2 SO4 brines at fixed salinity. The high salinity seawater is also included to provide the baseline for comparison. Then, two types of Alkali (NaOH and Na2 CO3 ) are added at 0.1 wt% concentration to the different brine recipes to verify their effects on the computed zeta-potential values in the SCM framework. The SCM results are compared with experimental data of zeta-potentials obtained with calcite in brine and crude oil in brine suspensions using the same brines and the two alkali concentrations. The SCM results follow the same trends observed in experimental data to reasonably match the zeta-potential values at the calcite/brine interface. Generally, the addition of alkaline drives the zeta-potentials towards more negative values. This trend towards negative zeta-potential is confirmed for the Smart Water recipe with the impact being more pronounced for Na2 CO3 due to the presence of divalent anion carbonate (CO3 )-2 . Some discrepancy in the zeta-potential magnitude between the SCM results and experiments is observed at the brine/crude oil interface with the addition of alkali. This discrepancy can be attributed to neglecting the reaction of carboxylic acid groups in the crude oil with strong alkali as NaOH and Na2 CO3 . The novelty of this work is that it clearly validates the SCM results with experimental zeta-potential data to determine the physicochemical interaction of alkaline chemicals with SmartWater in carbonates. These modeling results provide new insights on defining optimal SmartWater compositions to synergize with alkaline chemicals to further improve oil recovery in carbonate reservoirs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []