A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and Electrogenic Cell Soft Substrate

2019 
Conducting polymer hydrogels (CPHs) emerge as excellent functional materials, as they harness the advantages of conducting polymers with the mechanical properties and continuous 3D nanostructures of hydrogels. This bicomponent organization results in soft, all-organic, conducting micro-/nanostructures with multifarious material applications. However, the application of CPHs as functional materials for biomedical applications is currently limited due to the necessity to combine the features of biocompatibility, self-healing, and fine-tuning of the mechanical properties. To overcome this issue, we choose to combine a protected dipeptide as the supramolecular gelator, owing to its intrinsic biocompatibility and excellent gelation ability, with the conductive polymer polyaniline (PAni), which was polymerized in situ. Thus, a two-component, all-organic, conducting hydrogel was formed. Spectroscopic evidence reveals the formation of the emeraldine salt form of PAni by intrinsic doping. The composite hydrogel is...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    72
    Citations
    NaN
    KQI
    []