Macrophages govern antiviral responses in human lung tissues protected from SARS-CoV-2 infection

2021 
The majority of SARS-CoV-2 infections among healthy individuals result in asymptomatic to mild disease. However, the immunological mechanisms defining effective lung tissue protection from SARS-CoV-2 infection remain elusive. Unlike mice solely engrafted with human fetal lung xenograft (fLX), mice co-engrafted with fLX and a myeloid-enhanced human immune system (HNFL mice) are protected against SARS-CoV-2 infection, severe inflammation, and histopathology. Effective control of viral infection in HNFL mice associated with significant macrophage infiltration, and the induction of a potent macrophage-mediated interferon response. The pronounced upregulation of the USP18-ISG15 axis (a negative regulator of IFN responses), by macrophages was unique to HNFL mice and represented a prominent correlate of reduced inflammation and histopathology. Altogether, our work shed light on unique cellular and molecular correlates of lung tissue protection during SARS-CoV-2 infection, and underscores macrophage IFN responses as prime targets for developing immunotherapies against coronavirus respiratory diseases. HIGHLIGHTSO_LIMice engrafted with human fetal lung xenografts (fLX-mice) are highly susceptible to SARS-CoV-2. C_LIO_LICo-engraftment with a human myeloid-enriched immune system protected fLX-mice against infection. C_LIO_LITissue protection was defined by a potent and well-balanced antiviral response mediated by infiltrating macrophages. C_LIO_LIProtective IFN response was dominated by the upregulation of the USP18-ISG15 axis. C_LI
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []