Investigation of the Failure of the MP2 Method to Describe the Out-of-Plane Bending Motions of Carbon-Carbon Double-Bonded Molecules: The Role of Atomic Orbitals.

2021 
We present a detailed study on the role of atomic orbitals in the unphysical description of the out-of-plane bending (OOPB) vibrations with the MP2 method. The anharmonicities of the OOPB vibrations are found to be unphysically large for several basis sets with the MP2 method. We find that the inclusion of additional valence s and p orbitals to the basis set leads to the lowering of π* orbitals' energies along with the generation of several spurious low-energy virtual molecular orbitals (VMOs). Such erroneous VMOs create a disbalance between the σ and π correlations for the planar structure of the molecules. Since the OOPB vibrations distort the π* orbitals, the disbalance in the σ and π correlations leads to errors in the derivatives of the correlation energy with respect to the displacement along with OOPB modes. The diffuse functions in the basis set enhance the unphysical anharmonicities of the OOPB modes since these functions are of s- and p-type atomic orbitals. The polarization atomic orbitals of higher angular momentum improve the description of the π* orbitals and thereby reduce the disbalance between the σ and π correlations in the MP2 calculations. We find that the unphysical frequencies for the OOPB modes are significantly eliminated with the d and f orbitals on the C atoms in the basis set.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []