Mechanoporation is a potential indicator of tissue strain and subsequent degeneration following experimental traumatic brain injury

2019 
Abstract Background An increases in plasma membrane permeability is part of the acute pathology of traumatic brain injury and may be a function of excessive membrane force. This membrane damage, or mechanoporation, allows non-specific flux of ions and other molecules across the plasma membrane, and may ultimately lead to cell death. The relationships among tissue stress and strain, membrane permeability, and subsequent cell degeneration, however, are not fully understood. Methods Fluorescent molecules of different sizes were introduced to the cerebrospinal fluid space prior to injury and animals were sacrificed at either 10 min or 24 h after injury. We compared the spatial distribution of plasma membrane damage following controlled cortical impact in the rat to the stress and strain tissue patterns in a 3-D finite element simulation of the injury parameters. Findings Permeable cells were located primarily in the ipsilateral cortex and hippocampus of injured rats at 10 min post-injury; however by 24 h there was also a significant increase in the number of permeable cells. Analysis of colocalization of permeability marker uptake and Fluorojade staining revealed a subset of permeable cells with signs of degeneration at 24 h, but plasma membrane damage was evident in the vast majority of degenerating cells. The regional and subregional distribution patterns of the maximum principal strain and shear stress estimated by the finite element model were comparable to the cell membrane damage profiles following a compressive impact. Interpretation These results indicate that acute membrane permeability is prominent following traumatic brain injury in areas that experience high shear or tensile stress and strain due to differential mechanical properties of the cell and tissue organization, and that this mechanoporation may play a role in the initiation of secondary injury, contributing to cell death.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    21
    Citations
    NaN
    KQI
    []