Regime Inference for Sound Floating-Point Optimizations

2021 
Efficient numerical programs are required for proper functioning of many systems. Today’s tools offer a variety of optimizations to generate efficient floating-point implementations that are specific to a program’s input domain. However, sound optimizations are of an “all or nothing” fashion with respect to this input domain—if an optimizer cannot improve a program on the specified input domain, it will conclude that no optimization is possible. In general, though, different parts of the input domain exhibit different rounding errors and thus have different optimization potential. We present the first regime inference technique for sound optimizations that automatically infers an effective subdivision of a program’s input domain such that individual sub-domains can be optimized more aggressively. Our algorithm is general; we have instantiated it with mixed-precision tuning and rewriting optimizations to improve performance and accuracy, respectively. Our evaluation on a standard benchmark set shows that with our inferred regimes, we can, on average, improve performance by 65% and accuracy by 54% with respect to whole-domain optimizations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []