Representation of a Smooth Isometric Deformation of a Planar Material Region into a Curved Surface

2018 
We consider the problem of characterizing the smooth, isometric deformations of a planar material region identified with an open, connected subset \({\mathcal{D}}\) of two-dimensional Euclidean point space \(\mathbb{E}^{2}\) into a surface \({\mathcal{S}}\) in three-dimensional Euclidean point space \(\mathbb{E}^{3}\). To be isometric, such a deformation must preserve the length of every possible arc of material points on \({\mathcal{D}}\). Characterizing the curves of zero principal curvature of \({\mathcal{S}}\) is of major importance. After establishing this characterization, we introduce a special curvilinear coordinate system in \(\mathbb{E}^{2}\), based upon an a priori chosen pre-image form of the curves of zero principal curvature in \({\mathcal{D}}\), and use that coordinate system to construct the most general isometric deformation of \({\mathcal{D}}\) to a smooth surface \({\mathcal{S}}\). A necessary and sufficient condition for the deformation to be isometric is noted and alternative representations are given. Expressions for the curvature tensor and potentially nonvanishing principal curvature of \({\mathcal{S}}\) are derived. A general cylindrical deformation is developed and two examples of circular cylindrical and spiral cylindrical form are constructed. A strategy for determining any smooth isometric deformation is outlined and that strategy is employed to determine the general isometric deformation of a rectangular material strip to a ribbon on a conical surface. Finally, it is shown that the representation established here is equivalent to an alternative previously established by Chen, Fosdick and Fried (J. Elast. 119:335–350, 2015).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    7
    Citations
    NaN
    KQI
    []