UHPLC-UV/PDA Method Validation for Simultaneous Quantification of Luteolin and Apigenin Derivatives from Elaeis guineensis Leaf Extracts: An Application for Antioxidant Herbal Preparation.

2021 
Luteolin and apigenin derivatives present in oil palm (Elaeis guineensis) leaves (OPL) are reported to possess excellent antioxidant properties relating to numerous health benefits. To meet the global demand for flavonoids, OPL, which is plentifully generated as an agricultural by-product from oil palm plantations, can be further exploited as a new source of natural antioxidant compounds. However, to produce a standardized herbal preparation, validation of the quantification method for these compounds is required. Therefore, in this investigation, we developed and validated an improved and rapid analytical method, ultra-high-performance liquid chromatography equipped with ultraviolet/photodiode array (UHPLC-UV/PDA) for the quantification of 12 luteolin and apigenin derivatives, particularly focusing on flavonoid isomeric pairs: orientin/isoorientin and vitexin/isovitexin, present in various OPL extracts. Several validation parameters were assessed, resulting in the UHPLC-UV/PDA technique offering good specificity, linearity, accuracy, precision, and robustness, where the values were within acceptable limits. Subsequently, the validated method was employed to quantify luteolin and apigenin derivatives from OPL subjected to different drying treatments and extraction with various solvent systems, giving total luteolin (TLC) and apigenin content (TAC) in the range of 2.04–56.30 and 1.84–160.38 µg/mg extract, respectively. Additionally, partial least square (PLS) analysis disclosed the combination of freeze dry-aqueous methanol yielded OPL extracts with high TLC and TAC, which are strongly correlated with antioxidant activity. Therefore, we provide the first validation report of the UHPLC-UV/PDA method for quantification of luteolin and apigenin derivatives present in various OPL extracts, suggesting that this approach could be employed in standardized herbal preparations by adopting orientin, isoorientin, vitexin, and isovitexin as chemical markers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []