Integrating Optical and Electrochemical Approaches to Assess the Actions of Dynamin at the Fusion Pore.

2020 
Of the techniques currently available to monitor dense core granule exocytosis in adrenal chromaffin cells, two have proven particularly useful: carbon-fiber amperometry and total internal reflection fluorescence (TIRF) microscopy. Amperometry enables the detection of oxidizable catecholamines escaping a fusion pore with millisecond time resolution. TIRF microscopy, and its variant polarized-TIRF (pTIRF) microscopy, provides information on the characteristics of fusion pores at temporally later stages. Used in conjunction, amperometry and TIRF microscopy allow an investigator to follow the fate of a fusion pore from its formation to expansion or reclosure. The properties of fusion pores, including their structure and dynamics, have been shown by multiple groups to be modified by the dynamin GTPase (Dyn1). In this chapter, we describe how amperometry and TIRF microscopy enable insights into dynamin-dependent effects on exocytosis in primary cultures of bovine adrenal chromaffin cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []