A multimodal iPSC platform for cystic fibrosis drug testing

2021 
Cystic fibrosis (CF) is a monogenic lung disease caused by dysfunction of the cystic fibrosis transmembrane regulator (CFTR) anion channel, resulting in significant morbidity and mortality. The progress in elucidating the role of the CFTR channel using established animal and cell-based models led to the recent discovery of effective CFTR modulators for most individuals with CF. However, a subset of individuals with CF do not respond to these modulators and there is an urgent need to develop novel therapeutic strategies. In this study, we assembled a panel of iPSCs derived from individuals with common or rare variants representative of three distinct classes of CFTR dysfunction. To measure CFTR function in patient-specific iPSCs we adapted two established in vitro assays of CFTR function to iPSC-derived airway cells. In both a 3-D spheroid assay using forskolin-induced swelling as well as planar cultures composed of polarized mucociliary airway epithelial cells, we quantified CFTR baseline function and response to CFTR modulators and detected genotype-specific differences. Our results demonstrate the potential of the human iPSC platform as a research tool to study cystic fibrosis and in particular accelerate therapeutic development for CF caused by rare mutations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    1
    Citations
    NaN
    KQI
    []