Gene Body Methylation and Transcriptional Activity in ASXL1-Mutant Chronic Myelomonocytic Leukemia

2020 
Introduction: Truncating mutations in Additional Sex Combs-Like 1 (ASXL1) are associated with a high-risk disease phenotype in myeloid malignancies. In chronic myelomonocytic leukemia (CMML), truncating ASXL1 mutations are known to increase transcriptional activity of leukemic driver genes and have been associated with gene body hypermethylation. We interrogated the transcriptome and methylome of patients with ASXL1-mutant (MT) and -wildtype (WT) CMML using a multi-omics approach to test the hypothesis that gene expression is mediated through gene body methylation. Methods: Bone marrow mononuclear cells from patients with ASXL1 WT (n=8) and MT (n=8) CMML were subjected to targeted NGS of DNA, whole transcriptome shotgun sequencing (RNA-seq), and immunoprecipitation of DNA methyl residues (DIP-seq). After quality control all samples were sequenced on an Illumina HiSeq 4000 before further processing and data analysis. Differential gene expression analysis was performed to identify genes up-regulated in MT CMML. The samples in the two groups were treated as biological replicates and subjected to a consensus peak calling strategy requiring an overlap of at least 30% between samples and an adjusted p-value Results: Sixteen WHO-defined CMML patients were included, median age 69 years (48-77), 63% male, 50% had truncating ASXL1 frame shift mutations. Abnormal karyotypes were observed in the same number of patients and the burden of co-mutations was similar between the two groups (median number per group 3 vs. 3, p=0.508). This included several modulators of DNA methylation including TET2, DNMT3A, and IDH2 (median number per group 1 vs. 1, p=0.699). There was a predominant up-regulation of gene expression in MT CMML: 707 genes up- and 124 down-regulated (FDR Conclusions: Gene body methylation was positively associated with gene expression in MT CMML. However, the lack of differential gene body methylation between WT and MT CMML for the up-regulated genes make it an unlikely explanation for the observed increase in transcriptional activity among patients with MT CMML. Download : Download high-res image (182KB) Download : Download full-size image Figure 1 . Disclosures Ordog: Millipore Sigma: Patents & Royalties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []