A Study on the Characteristics of the Indirect Air Cooling System of a Lithium-ion Battery Module for Vehicle

2018 
In electrified vehicles, large lithium ion batteries are typically used because of their high charge and discharge efficiency, high power density, wide range of SOC operation, longer shelf life, and lower self-discharge rate. However, such type of batteries should be kept at the proper operating temperature to extend their battery life and avoid explosion. Therefore, a battery cooling system is an essential sub system for electrified vehicles. In this study, the multi-dimensional battery heat transfer model was developed by using Matlab/Simulink, and validated with CFD simulation results. Based on the Matlab/Simulink model, the cell maximum temperature, cell maximum temperature deviation, and distribution were tested. The model is then used to estimate the effect of ambient temperature, cooling air temperature and flow rates, heat generation, and the design of the cooling fin on temperature distribution and maximum temperature change in the battery module.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []