Aragonite Crystals Grown on Bones by Reaction of CO2 with Nanostructured Ca(OH)2 in the Presence of Collagen. Implications in Archaeology and Paleontology

2014 
The loss of mechanical properties affecting archeological or paleontological bones is often caused by demineralization processes that are similar to those driving the mechanisms leading to osteoporosis. One simple way to harden and to strengthen demineralized bone remains could be the in situ growth of CaCO3 crystals in the aragonite polymorph – metastable at atmospheric pressure −which is known to have very strong mechanical strength in comparison with the stable calcite. In the present study the controlled growth of aragonite crystals was achieved by reaction between atmospheric CO2 and calcium hydroxide nanoparticles in the presence of collagen within the deteriorated bones. In a few days the carbonation of Ca(OH)2 particles led to a mixture of calcite and aragonite, increasing the strength of the mineral network of the bone. Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM–EDS) and Fourier transform infrared (FT-IR) spectrometry showed that aragonite crystallization ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    30
    Citations
    NaN
    KQI
    []