Application of Tensorial Electrical Resistivity Mapping to Archaeological Prospection

2008 
In an archaeological site (Pilisszentkereszt Cistercian Monastery, Hungary) we carried out 3D tensorial geoelectric mapping measurements. We applied the well known tensorial form of Ohm’s differential law, where a 2 × 2 resistivity tensor relates the horizontal current density vector and the corresponding electric field vector. In the DC apparent resistivity tensor there are three independent rotational invariants, and we defined two alternative sets. In the field two perpendicular AB directions were used, and 16∙15 = 240 potential electrodes (with an equidistant space of Δx = Δy = 50 cm) were put in the central (nearly squared, 7.5 m ∙ 7 m) area between the current electrodes. Due to a four-channel measuring system, it was possible to determine both components of a horizontal electric vector at the same time. The time needed to measure all potential differences between the neighbouring potential electrodes (thus to obtain 15∙14 = 210 resistivity tensors), was about 40 min. The tensorial results are shown together with the results of traditional measurements. Man-made origin anomalies as a subsurface channel, building remnants, a furnace and an ancient road have been discovered and described. In field conditions, any resistivity estimation provides reliable information about the subsurface (both the tensor invariants and the traditional mean values). At the same time, the multidimensional (2D and 3D) indicators proved to be informative only in case of significant subsurface inhomogeneities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    11
    Citations
    NaN
    KQI
    []