Factors Controlling Hydrothermal Nickel and Cobalt Mineralization—Some Suggestions from Historical Ore Deposits in Italy

2019 
We compare three poorly known, historical Ni–Co-bearing hydrothermal deposits in different geological settings in Italy: The Ni–Co–As–Sb–Au-bearing Arburese vein system (SW Sardinia), the Co–Ni–As-rich Usseglio vein system (Piedmont), and the small Cu–Ag–Co–Ni–Pb–Te–Se stockwork at Piazza (Liguria). These deposits share various (mineralogical, chemical, thermal, and stable isotopic) similarities to the Five Element Vein-type ores but only the first two were economic for Co–Ni. The Sardinian Ni-rich veins occur in Paleozoic basement near two Variscan plutons. Like the Co-rich Usseglio vein system, the uneconomic Piazza deposit is hosted in an ophiolite setting anomalous for Co. The Sardinian and Usseglio deposits share a polyphasic assemblage with Ni–Co–As–Sb–Bi followed by Ag-base metal sulfides, in siderite-rich gangue, whereas Piazza shows As-free, Ag–Pb–Te–Se-bearing Co–Ni–Cu sulfides, in prehnitechlorite gangue. Fluid inclusions indicated Co–Ni arsenide precipitation at ≈170 °C for Usseglio, whereas for the Sardinian system late sulfide deposition occurred within the 52–126 °C range. Ore fluids in both systems are NaCl-CaCl2-bearing basinal brines. The chlorite geothermometer at Piazza provides the range of 200–280 °C for ore deposition from CO2-poor fluids. Enrichments in Se and negative δ13C in carbonates suggest interaction with carbonaceous shales. These deposits involve issues about source rocks, controls on Co/Ni and possible role of arsenic and carbonate components towards economic mineralization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    7
    Citations
    NaN
    KQI
    []