Particle-associated and free-living bacterial communities in an oligotrophic sea are affected by different environmental and anthropogenic factors

2020 
In the oceans and seas, environmental conditions change over multiple temporal and spatial scales. Here, we ask what factors affect the bacterial community structure across time, depth and size fraction during six seasonal cruises (two years) in the ultra-oligotrophic Eastern Mediterranean Sea. The bacterial community varied most between size fractions (free-living vs particle-associated), followed by depth and finally season. The free-living (FL) community was taxonomically richer and more stable than the particle-associated (PA) one, which was characterized by recurrent "blooms" of heterotrophic bacteria such as Alteromonas and Ralstonia. The heterotrophic FL and PA communities were also correlated with different environmental parameters: depth and phytoplankton correlated with the FL population, whereas PA bacteria were correlated primarily with season. A significant part of the variability in community structure could not, however, be explained by the measured environmental parameters. The metabolic potential of the PA community, predicted from 16S amplicon data, was enriched in pathways associated with the degradation and utilization of biological macromolecules, as well as plastics, other petroleum products and herbicides. The FL community was enriched in pathways for the metabolism of inositol phosphate, a potential phosphorus source, and of polycyclic aromatic hydrocarbons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    3
    Citations
    NaN
    KQI
    []