A Geometric Orthogonal Projection Strategy for Computing the Minimum Distance Between a Point and a Spatial Parametric Curve

2016 
A new orthogonal projection method for computing the minimum distance between a point and a spatial parametric curve is presented. It consists of a geometric iteration which converges faster than the existing Newton’s method, and it is insensitive to the choice of initial values. We prove that projecting a point onto a spatial parametric curve under the method is globally second-order convergence.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    4
    Citations
    NaN
    KQI
    []