The Particle Swarm Optimization Algorithm with Adaptive Chaos Perturbation
2016
Aiming at the two characteristics of premature convergence of particle swarm optimization that the particle velocity approaches 0 and particle swarm congregate, this paper learns from the annealing function of the simulated annealing algorithm and adaptively and dynamically adjusts inertia weights according to the velocity information of particles to avoid approaching 0 untimely. This paper uses the good uniformity of Anderson chaotic mapping and performs chaos perturbation to part of particles based on the information of variance of the population’s fitness to avoid the untimely aggregation of particle swarm. The numerical simulations of five test functions are performed and the results are compared with several swarm intelligence heuristic algorithms. The results shows that the modified algorithm can keep the population diversity well in the middle stage of the iterative process and it can improve the mean best of the algorithm and the success rate of search.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
3
Citations
NaN
KQI