Does ceramic translucency affect the degree of conversion of luting agents

2020 
Solely light-activated luting agents have been suggested for cementing procedures with aesthetic rehabilitations, but questions remain regarding their curing potential under more opaque prosthesis. To determine the degree of carbon double bond (C=C) conversion (DC) of four categories of luting strategies when considering the interposition of lithium-disilicate ceramic laminates with different translucencies during the photo-activation procedures. Four different luting strategies were considered: a dual-activated resin-based cement (control, RelyX ARC, 3M ESPE), a solely light-activated resin-based cement (RelyX Veneer, 3M ESPE), a flowable resin-based composite (Filtek Z350 XT Flow, 3M ESPE), and a pre-heated (68 °C for 30 min) regular resin-based composite (Filtek Z350 XT, 3M ESPE). The DC was determined by Fourier-transformed infrared spectroscopy (n = 6), 1 min after light-activation in two conditions: (a) with direct light exposure and (b) with light exposure with the interposition of lithium-disilicate disks (e.max Press, Ivoclar Vivadent) with 1.5 mm thickness with three translucent degrees: high translucency (HT), low translucency (LT), and medium opacity (MO). The translucency parameter (TP) formula was performed to quantitatively evaluate the ceramics’ translucencies using white (L* = 93.7, a* = 1.2, and b* = 0.8) and black (L* = 8.6, a* = − 0.7, and b* = − 1.5) backgrounds. The irradiance from the light curing unit (Bluephase G2, Ivoclar Vivadent) was calculated with a power meter (Ophir Optronics) with direct light exposure to the sensor and also with the interposition of the light ceramic discs. Degree of conversion data was submitted to two-way ANOVA and Tukey’s test (α = 0.05). Translucency parameters values were 16.4, 13.4 and 12.6 for HT, LT and MO ceramics—respectively—and affected the percentage of light transmission. For all ceramic translucencies the highest DC values were observed for the dual-activated resin-based cement followed by the solely light-activated resin-based cement, the flowable composite and then by pre-heated regular composite. The ceramic’s translucency influenced the DC only for the pre-heated composite. The effect of the ceramic translucency on the curing behavior was dependent on the luting strategy. The DC was only affected for the pre-heated composite, which demonstrates lower conversion with the increased ceramic opacity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    2
    Citations
    NaN
    KQI
    []