A differential transcriptional profile by Culex quinquefasciatus larvae resistant to Lysinibacillus sphaericus IAB59 highlights genes and pathways associated with the resistance phenotype

2019 
Background The study of the mechanisms by which larvae of the Culex quinquefasciatus mosquito survive exposure to the entomopathogen Lysinibacillus sphaericus has benefited substantially from the generation of laboratory-selected colonies resistant to this bacterium. One such colony, RIAB59, was selected after regular long-term exposure of larvae to the L. sphaericus IAB59 strain. This strain is characterized by its ability to produce the well known Binary (Bin) toxin, and the recently characterized Cry48Aa/Cry49Aa toxin, able to kill Bin-resistant larvae. Resistance to Bin is associated with the depletion of its receptor, Cqm1 α-glucosidase, from the larvae midgut. This study aimed to identify novel molecules and pathways associated with survival of the RIAB59 larvae and the resistance phenotype.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    7
    Citations
    NaN
    KQI
    []