Automatic polyp detection in colonoscopy videos
2017
Colon cancer is the second cancer killer in the US [1]. Colonoscopy is the primary method for screening and prevention of colon cancer, but during colonoscopy, a significant number (25% [2]) of polyps (precancerous abnormal growths inside of the colon) are missed; therefore, the goal of our research is to reduce the polyp miss-rate of colonoscopy. This paper presents a method to detect polyp automatically in a colonoscopy video. Our system has two stages: Candidate generation and candidate classification. In candidate generation (stage 1), we chose 3,463 frames (including 1,718 with-polyp frames) from real-time colonoscopy video database. We first applied processing procedures, namely intensity adjustment, edge detection and morphology operations, as pre-preparation. We extracted each connected component (edge contour) as one candidate patch from the pre-processed image. With the help of ground truth (GT) images, 2 constraints were implemented on each candidate patch, dividing and saving them into polyp group and non-polyp group. In candidate classification (stage 2), we trained and tested convolutional neural networks (CNNs) with AlexNet architecture [3] to classify each candidate into with-polyp or non-polyp class. Each with-polyp patch was processed by rotation, translation and scaling for invariant to get a much robust CNNs system. We applied leave-2-patients-out cross-validation on this model (4 of 6 cases were chosen as training set and the rest 2 were as testing set). The system accuracy and sensitivity are 91.47% and 91.76%, respectively.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
8
References
15
Citations
NaN
KQI