Evaluating Superconductors through Current Induced Depairing

2019 
The phenomenon of superconductivity occurs in the phase space of three principal parameters: temperature T, magnetic field B, and current density j. The critical temperature T c is one of the first parameters that is measured and in a certain way defines the superconductor. From the practical applications point of view, of equal importance is the upper critical magnetic field B c 2 and conventional critical current density j c (above which the system begins to show resistance without entering the normal state). However, a seldom-measured parameter, the depairing current density j d , holds the same fundamental importance as T c and B c 2 , in that it defines a boundary between the superconducting and normal states. A study of j d sheds unique light on other important characteristics of the superconducting state such as the superfluid density and the nature of the normal state below T c , information that can play a key role in better understanding newly-discovered superconducting materials. From a measurement perspective, the extremely high values of j d make it difficult to measure, which is the reason why it is seldom measured. Here, we will review the fundamentals of current-induced depairing and the fast-pulsed current technique that facilitates its measurement and discuss the results of its application to the topological-insulator/chalcogenide interfacial superconducting system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []