Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals

2018 
Abstract The composition and structure of Humic acid (HA) is so heterogeneous that it brings significant barriers to investigate the interaction between HA and heavy metal ions. The isolation of HA with relatively homogeneity is a key to reveal the binding mechanisms between HA and heavy metals. In this work, ten HA fractions (HAs) were obtained by sequential alkali extraction procedure and nature differences of the extracted HAs were considered as explanatory factors for binding characteristics of Cu 2+ , Pb 2+ and Cd 2+ . The results indicate that more large molecular weight (MW) HA subunits, less carboxyl and phenolic group contents, weaker aromaticity and polarity were measured with increasing extractions, inducing weaker binding capacity of HAs. Ligand binding and bi-Langmuir models indicated that the sorption capacity and binding affinity of earlier extracted HAs were higher than the latter ones. The peak area changes at 3427, 1599, and 619 cm −1 pre- and post-adsorption in FTIR spectra suggested carboxyl, phenolic and nitrogen-containing groups were involved in the adsorption process. At the same time, the peak area difference between HAs and HAs-metal (ΔS) of phenolic groups were 8.22–20.50, 6.81–21.11 and 10.66–19.80% for Cu 2+ , Pb 2+ and Cd 2+ , respectively, ΔS of carboxyl groups 6.64–17.03, 8.96–16.82 and 9.45–17.85% for Cu 2+ , Pb 2+ and Cd 2+ , respectively, ΔS of nitrogen-containing groups 0.33–0.48, 0.20–1.38 and 0.31–0.59% for Cu 2+ , Pb 2+ and Cd 2+ , respectively. ΔS of phenolic and carboxyl groups were larger than those of nitrogen-containing groups, implying that these two groups were the predominant binding sites suppliers for metal ions, which were also supported by the results of correlation analysis. This work is helpful to insight the environmental impacts of natural organic matter and the fate of heavy metals in natural environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    18
    Citations
    NaN
    KQI
    []