Sodium dehydroacetate induces cardiovascular toxicity associated with Ca2+ imbalance in zebrafish

2021 
Abstract The environmental effects of additives have attracted increasing attention. Sodium dehydroacetate (DHA-S), as an approved preservative, is widely added in processed foods, cosmetics and personal care products. However, DHA-S has been recently reported to induce hemorrhage and coagulation aberration in rats. Yet little is known about the ecotoxicological effect and underlying mechanisms of DHA-S. Here, we utilized the advantage of zebrafish model to evaluate such effects. DHA-S induced cerebral hemorrhage, mandibular dysplasia and pericardial edema in zebrafish after 24 h exposure (48–72 hpf) at 50 mg/L. We also observed the defective heart looping and apoptosis in DHA-S-treated zebrafish through o-dianisidine and acridine orange staining. Meanwhile, DHA-S induced the deficiency of Ca2+ and vitamin D3 in zebrafish. We further demonstrated that DHA-S stimulated Ca2+ influx resulting in Ca2+-dependent mitochondrial damage in cardiomyocytes. Additionally, DHA-S inhibited glucose uptake and repressed the biosynthesis of amino acids. Finally, we identified that sodium bicarbonate could rescue zebrafish from DHA-S induced cardiovascular toxicity. Altogether, our results suggest that DHA-S is a potential risk for cardiovascular system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    1
    Citations
    NaN
    KQI
    []