Multifaceted targeting of neurodegeneration with bioactive molecules of saffron (Crocus sativus): An insilco evidence-based hypothesis

2020 
Abstract Oxidative stress-mediated neurodegeneration is responsible for 12% mortality around the globe. Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) are the most prevalent neurodegenerative diseases, associated with modulation of acetylcholine levels and amyloid beta accumulation & dopamine level and alpha-synuclein oligomerization, respectively. Therefore, a better understanding of their pathological mechanisms reveals novel target proteins and encourages exploitation of suitable lead molecules. In the present study, targets for AD and PD were sought not only to suppress the pathological condition but to restore the normal physiological function. In this view, activation of retinoic acid receptor alpha can be formulated as a novel target to improve choline acetyltransferase transcription that works together with acetylcholine esterase and beta-secretase 1 inhibition against AD. Likewise, inhibition of Polo-like kinase 2 fails to phosphorylate alpha-synuclein and motivates efficient autophagic clearance. Therefore, PLK2 inhibition, together with L-DOPA supplementation and monoamine oxidase B inhibition widens the therapeutic options for PD. As oxidative stress is the major factor for neurodegeneration, AMPK activation stabilizes energy metabolism and Sirtuin 1 (histone deacetylase 1) activation enhances AMPK, PGC1a and Nrf gene expressions. Phytochemical extracts from saffron stigma were broadly appreciated on memory enhancement and cognition. However, the exact mechanism was not established. Therefore, this inspires the exploitation of phytochemicals in saffron stigma extract using in-silico tools, to anticipate lead molecules that interact with various neurodegeneration associated protein targets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    1
    Citations
    NaN
    KQI
    []