Multistep Energy Transfer in Single Molecular Photonic Wires

2004 
We demonstrate the synthesis and spectroscopic characterization of an unidirectional photonic wire based on four highly efficient fluorescence energy-transfer steps (FRET) between five spectrally different chromophores covalently attached to double-stranded DNA. The DNA-based modular conception enables the introduction of various chromophores at well-defined positions and arbitrary interchromophore distances. While ensemble fluorescence measurements show overall FRET efficiencies between 15 and 30%, single-molecule spectroscopy performed on four spectrally separated detectors easily uncovers subpopulations that exhibit overall FRET efficiencies of up to ~90% across a distance of 13.6 nm and a spectral range of ~200 nm. Fluorescence trajectories of individual photonic wires show five different fluorescence intensity patterns which can be ascribed to successive photobleaching events.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    171
    Citations
    NaN
    KQI
    []