Numerical Modeling Design for the Hybrid Additive Manufacturing of Laser Directed Energy Deposition and Shot Peening Forming Fe-Cr-Ni-B-Si Alloy.

2020 
Hybrid additive manufacturing is of great significance to make up for the deficiency of the metal forming process; it has been one of the main trends of additive manufacturing in recent years. The hybrid process of laser directed energy deposition (laser DED) and shot peening is a new technology combining the principles of surface strengthening and additive manufacturing, whose difficulty is to reduce the interaction between the two processes. In this paper, a new model with a discrete phase and fluid-solid interaction method is established, and the location of the shot peening point in the hybrid process is optimized. The distributions of the temperature field and powder trajectory were researched and experiments were carried out with the optimized parameters to verify simulation results. It was found that the temperature field and the powder trajectory partly change, and the optimized injection point is located in the stress relaxation zone of the material. The densities and surface residual stresses of samples were improved, and the density increased by 8.83%. The surface stress changed from tensile stress to compressive stress, and the introduced compressive stress by shot peening was 2.26 times the tensile stress produced by laser directed energy deposition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    1
    Citations
    NaN
    KQI
    []