A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere
2012
A gas-chromatographic (GC) instrument was de- veloped for measuring hydrogen cyanide (HCN) in the lower atmosphere. The main features of the instrument are (1) a cryogen-free cooler for sample dehumidification and enrich- ment, (2) a porous polymer PLOT column for analyte separa- tion, (3) a flame thermionic detector (FTD) for sensitive and selective detection, and (4) a dynamic dilution system for cal- ibration. We deployed the instrument for a 4 month period from January-June, 2010 at the AIRMAP atmospheric mon- itoring station Thompson Farm 2 (THF2) in rural Durham, NH. A subset of measurements made during 3-31 March is presented here with a detailed description of the instrument features and performance characteristics. The temporal reso- lution of the measurements was 20 min, with a 75 s sample capture time. The 1 measurement precision was<10 % and the instrument response linearity was excellent on a calibra- tion scale of 0.10-0.75 ppbv (±5 %). The estimated method detection limit (MDL) and accuracy were 0.021 ppbv and 15 %, respectively. From 3-31 March 2010, ambient HCN mixing ratios ranged from 0.15-1.0 ppbv (±15 %), with a mean value of 0.36± 0.16 ppbv (1 ). The approximate mean background HCN mixing ratio of 0.20± 0.04 ppbv appeared to agree well with tropospheric column measurements re- ported previously. The GC-FTD HCN measurements were strongly correlated with acetonitrile (CH 3CN) measured con- currently with a proton transfer-reaction mass spectrometer (PTR-MS), as anticipated given our understanding that the nitriles share a common primary biomass burning source to the global atmosphere. The nitriles were overall only weakly correlated with carbon monoxide (CO), which is reasonable considering the greater diversity of sources for CO. How- ever, strong correlations with CO were observed on several nights under stable atmospheric conditions and suggest re- gional combustion-based sources for the nitriles. These re- sults demonstrate that the GC-FTD instrument is capable of making long term, in-situ measurements of HCN in the lower atmosphere. To date, similar measurements have not been performed, yet they are critically needed to (1) better evalu- ate the regional scale distribution of HCN in the atmosphere and (2) discern the influence of biomass burning on surface air composition in remote regions.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
57
References
13
Citations
NaN
KQI