Effect of short-term erythropoietin therapy on insulin resistance and serum levels of leptin and neuropeptide Y in hemodialysis patients

2017 
Introduction: Insulin resistance (IR) is a known complication of end-stage kidney disease (ESKD). It may be an important therapeutic target in stages of chronic kidney disease. Aim: The study was conducted to evaluate the effect of short-term treatment with recombinant human erythropoietin (rHuEpo) therapy on IR, serum leptin, and neuropeptide Y in ESKD patients on hemodialysis. Materials and Methods: Thirty ESKD patients were enrolled in the study and were randomly assigned into two groups. Erythropoietin (rHuEpo) group consisted of 15 patients (7 females, 8 males, mean age 47.8 ± 9.3 years) treated with rHuEpo therapy after each session of dialysis. No-rHuEpo group consisted of 15 patients (7 females, 8 males, mean age 45.5 ± 8.6 years) not treated with rHuEpo. In addition to, control group consisted of 15 healthy controls (6 females, 9 males, mean age 48.8 ± 11 years). Results: The mean fasting insulin (11 ± 4.2 mU/L) and homeostatic model assessment of IR (HOMA-IR) test (2.6 ± 1.1) were significantly higher in ESKD patients than control group (6.6 ± 1.4 mU/L and 1.5 ± 0.3, respectively). There were significant decreases in glycated hemoglobin (HbA1c) (5.6 ± 1%), fasting insulin level (9.3 ± 3.1 μU/mL), HOMA-IR (2.2 ± 0.7), and serum leptin levels (17.4 ± 8.7 ng/mL) also significant increase in neuropeptide Y levels (113 ± 9.9 pg/mL) after 3 months of rHuEpo therapy, in addition to further significantly decrease fasting insulin levels (7.1 ± 2.1 μU/mL) and HOMA-IR (1.7 ± 6) after 6 months in rHuEpo group. In contrast, there were significantly increases in HbA1c% (5.9 ± 0.5%) and leptin levels (42.3 ± 25.3 ng/mL) in No-rHuEpo group throughout the study. Conclusion: IR and hyperleptinemia are improved by recombinant human erythropoietin therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    3
    Citations
    NaN
    KQI
    []